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We derive a complex line integral representation for the Cebyshev norm of
periodic spline interpolation operators of odd degree on uniform lattices_ Several
generalizations are indicated. -<; 1991 Academic PrC-5s, Inc

We consider the problem of Hermite interpolation for polynomial splines
of degree 2k + 1 on a uniform lattice which without loss of generality is
assumed to be given by the integers l.. If the spline function s is required
to have period N?: 1 and to interpolate derivatives up to the order r - I,
r?: 1, i.e.,

s(P)(v)=y~P),. v=O(1)N-l, p=O(1)r-l, (1)

then this problem is known to be well-posed provided s is of continuity
class C(2k - r + 1l( IR) and satisfies the consistency condition r ~ k + 1 (cf.

[6, 9]). After a suitable shifting of coordinates N successive polynomial
components of s may be represented by the vector

Particularly (cf. [6,9]), if we let (:= exp 2niiN, the components q;p(t),
j = 1(1) N, P =O( 1) r - 1, of the r fundamental splines

qp(t) := (qlp(t), ..., qN.p(t)),

281

p = 0(1) r - I,
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which are defined by the interpolation conditions

p, (J = 0(1) r - 1, j = 1(1) N,

arc given by

1 .y - 1 .

qj,p(t)=-V L (-JphWt I,r(t, (1');
j ~ = 0

j = 1(l ) N, P= O( 1) r - 1. (2 )

The functions hW+ I,r in (2) are linear combinations of the Euler-Frobenius
polynomials H m(t, z) (cf. [6]), For each fixed r, 1!(,,:;;; k + 1, they have a
representation

r I

h (p) (t )-" (a,p) ( ) H (t ~)2k - 1, r , Z - L. .:x 2k + 1" Z Zk + 1 - a ,'"

cr=O

(3)

The coefficients Ct~~'~)l,,(Z) in (3) are, for each fixed p = O( 1) r - 1, defined
as solutions of the linear systems

ca

-h(p) (t)1 -().2ta 2k-l,r'z (~I- pa' p,v = 0(1) r- 1. (4)

The common determinant L1 Zk + I.Az) of the linear systems (4 )-which does
not depend on p can for 1:;;; r:;;; k + 1 be written as (cf. [2])

L1 2k + 1, ,(z) = (- 1)['/2l O! 1!... (r - I)! (1 - z )(, - 1)(4k- ,+ 4 )/2 H Zkt I, ,(1, z).

(5)

The generalized Euler-Frobenius polynomials H Zk + 1) 1, z) which occur in
(5) are reciprocal polynomials of degree 2(k - r + 1) in z with simple real
zeros of sign (-1)' (cf. [3]). Particularly,

and

EXAMPLE. For r = 2 we obtain

(1 - Z )Zk H 2k ... 1,2(1, z) h~~) I 1.Z(t, z)

= (2k + 1) H2d 1, z) H Zk ( t, z) - 2kH2k I (1, z) H 2k I 1(t, z)

and

(1 - Z)2k + I H 2k . 1,2(1,z) h~~\ 1,2(t, z)

= H 2k ( 1, z) H 2H 1(t, z) - H Zk + 1(1,Z) H 2k (t, z) (6)
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with

H3,2(1, z) = 1

H S•2(l, z) = 1- 6z +Z2

H7,2(I,z) = 1-72z+262z2 -72z 3 +Z4

In the special case r = k = 2 we arrive at

(Z2 - 6z + 1) h~oi(t, z)

= 4(z - 1)(Z2 + 4z + 1) (5 - 5(z - 1)(3z2+ 8z + I) (4

+ 20z(z - 1)(z + 1) (3 - 10z(z - 1)2 (2 + Z(Z2 - 6z + I)
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and

(Z2 - 6z + I) h~~i((, z)

= (z 3 + lIz 2 + 11 z + 1) (5 - (4z 3 + 33z2 + 22z + 1) (4

+ 2z(3z 2 + 14z + 3) (3 -4z(z-l)(z + I) (2 + Z(Z2 - 6z + 1)(. (7)

Analogously, for r = 2, k = 3,

H7,2( I, z) h~~i(t, z)

= 6(z - 1)(Z4 + 26z 3 + 66z2+ 26z + I) (i

-7(z-1 )(5z4+ l04z3 + 198z2 + 52z + 1)[6

+ 84z(: - 1)(Z3 + 14z2 + 14z + 1)(5

- 105:(z - 1)2 (Z2 + 6z + 1) (4 + 70z(z - 1)(Z3 - 7z 2 - 7z + I) (3

- 2lz(z - 1)2 (22- 22z + 1)(2 + Z(Z4 -72z 3 + 262z 2-72z + 1)

and

H i ,2( I, z) h~~~(t, z)

= (Z5 + 57z4+ 30223 + 302z2+ 572 + 1)[7

- (6z 5 + 285z4+ 1208z 3 +906z 2 + 114z + 1)[6

+ 3z(5z4+ 176z3 + 478z2+ 1762 + 5)(5

-20z(z-1 )(Z3 + 202 2 + 20z + 1){4

+ 5z(3z4- 8z 3
- 158z2

- 8z + 3 )[3

- 6z(z - 1)(Z3 - 31z2 - 31z + 1) {2

+Z(Z4 -722 3 + 262z2-72z + 1)(. (8)
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2

Let Lix + I , denote the spline interpolation operator whieh assigns to
eaeh incide~ce matrix y:=((y~p))), v=O(1)N-l, p=O(l)r-l, that
N-periodic spline function s = Lix. 1.'Y E C(2k + I 'l(lR) of degree 2k + 1
with knots in the integers which is characterized by the interpolation
properties (I).

The Cebyshev norm of L~ I I" is defined by

iIL~+1.,II:= sup IL2k +1.,YII",;
IVII,;; 1

here, IIIYII := max{ ly~P)I, v= 0(1) N - 1, p = O( I) r - 1}. It is easily seen (cr.
[4, 10]) that

r-l N

IL~ + 1.,11 = max L L Iqj.p(t)I.
O~t~lp=Oj=l

(9)

Consequently, any evaluation of (9) must start with an investigation of the
sign behaviour of the components q,.p(t) of the fundamental splines qp(t)
for 0 ~ t ~ 1. This has already been done for r = 2 in the case of cardinal
Hermite interpolation by Lipow [4]. His arguments may be extended to
the present more general case, but we freely omit some of the more
cumbersome yet elementary details of this process.

In addition, we mention that another and perhaps generally more
convenient method of solving this problem is available due to the fact that
virtually all the intrinsic properties of the Hermite fundamental splines
qp( t) may be obtained as (usually simple) consequences of a transformation
of their component's complex representation (2) into a real one (cr. [9]
and Remark (i) in Section 3 of the present paper for some details).

3

We now present a detailed discussion of the two most simple cases: r = 2
and r = 3. The extension of our procedure to the case of arbitrary r is
generally obvious.

In order to avoid any concealment of the arguments used by the
necessity of handling too many different cases we categorically go, with
only a slight loss of generality, on the assumption that N is even, I.e.,
N=2m.
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1. The case r= 2. The components of the fundamental spline qo(t) have
the property

j= 1(1 )N,

whereas for the components of ql(t) we have

,q .(t) I= {qj. I (t)
I' -qj,l(t)

As a consequence, (2) and (9) give

for j = 1(1)I1l

for j = m + 1(1)N.

1 [2m 2m 1

1
'1 2m I max "" Y jl'h lO ) , (t VI'): "2k ' I. 21 =, - L L ~ 2k ' 1,2 ' <"

o '" 1 ,;; 1 2m I _ I I' _ 0

m 2m I 2m "m ' ]
+ " " V - I!lh (1 ) (t V 1') ,,- " ' Y -, JII11 11) (t ,v 1')L L :, , 2k + 1.2 , ~ -- L L \, 2kl 1,2 ,<"

j-! 1" 0 l~m+1 ,,~O

1 [ 2m 1 h(1
) (f rl

l
)]

= - max 2mh lO ) (t 1) +4" 2k + l.2 ,~ ,
')m ' 2k I 1.2 ' L ti' j
- 0 ~ , ~ 1 Jl = I '=-

JJ odd

2 2m I hll) (1 rll)
=1+- L 2k+l.22'~

m (11_1'
p_ 1 ':I

I' odd

(10)

In the last instance we have made use of the fact that hi;)+ ,,2(t, 1) = 1 and
the sum in brackets assumes its maximum value for t = 1(cf. [4]).

By a well-known argument, which is based on an application of the
calculus of residues (cr. [5]), expression (10) may be transformed into the
complex line integral representation

I' hi 1) C ~).m 1
1I1 2m I' = 1+-t' 2k+ 1.2 2'~ -"'-- d, (11 Ii
L ~ 2k I 1,2 . • 1 .In -+- 1 _.

7[/ (.'2 _.., ('I .. - k,

Here, C i and C 2 denote positively oriented circles about the origin with
radii PI = P and P2 = pi, respectively, where P < 1 is fixed in such a way
that C, encloses all the k-l zeros Z,<Z2<'" <Zk I of H 2k +1,2(1,Z)

which are located in the interior of the unit circle.
According to the symmetry relation

the integral

h (l) (l~) In I
~ 2k+ 1,2 2'~ _Z__ dz
'c, z - 1 zm + 1
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can easily be shown to be equal to

and thus (11) eventually leads to

l' 1-zm h(I) (-'- z)dzIIUm II = 1 +-rh __ 2k+I,22' -
2k+I,2 niJc , 1+zm z-l z'

(12)

an expression, whose evaluation turns out to be of the utmost simplicity,

EXAMPLES. (1) In the (trivial) case k = 1 we get from (6)

h~~i(t, z) = (t 3
- 2t2+ t)z + (t 3

- t2),

i.e.,

h ~ Ii(t, z) = k(z - I ),

which, according to (12), results in

II L 2m II = 1+_1_1 1- zm dz = ~.
3.2 . 8ni JZ1 < 1 1+ Zm Z 4

It goes without saying that (13) may easily be verified directly.

(2) For k = 2 we have from (7)

h(I)(~ z)=~(Z-1)(Z2-38Z+1)
5,2 2' 32 z2-6z+ 1

and thus by (12) we immediately arrive at

11
2m , 1 1 f 1 - zm Z2 - 38z + 1 dz

LI= +- -- 
5.2' 32ni c, 1+zm z2-6z+ 1 z

=~ [17 +4 J2 I - (3 - 2 fi )mJ.
16 1+(3-2fi)m

(13 )

(14 )

Evidently, (14) enables us to state some monotonicity properties for IIL~';II

which turn out to be completely analogous to those given earlier by
Cheney and Schurer [1] in the case of Lagrange interpolation with cubic
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splines. Furthermore, In the case of cardinal spline interpolation (i.c.,
m --+ x') we have

1 r ::2 - 38z + 1 dz
:IL~21=1+-.~ 7 2 _ --::.-

32m "1=1 ~ 1/2 ~ - 6" + 1 ~

17 +4 fi
16

(3) In the same way, for k = 3, from (8) and (12) we deduce that

1" 1 - zm Z4 - 544z 3 + 7206z2- 544z + 1 d::
IIL~m I = 1+--¢ -- --,-----z------::----

,2 128ni. zl _ I '21+zm z4-72::3+262z2-72z+1 ::

According to the fact that the relevant zeros of H7 , 2( 1, z) are
Z I = 0.01466871... and Z2 = 0.28330706..., the further evaluation of this
expression presents no difficulties.

Remark (i). In [9] we have deduced from (2) a real form of the com
ponents q).p(t) of the basis splines qp( t). As has already been notcd earlier,
this representation not only enables us to give another proof of the proper
ties of q).p(t) which are used in the course of our derivation of expressions
for the norm of the operator L~ + I.r' but also provides us with the means
for a different mcthod of computing IIL~+ I.rll itself.

For k = r = 2 and N = 2m the last mentioned possibility reads as follows:
The components q).1 (t), j = 1(I )2m, of ql (t) are given (cf. [9]) by

qj.1 (t) = h~~i(t, 0) b). 2m - h~~i(1 - t, 0) b I) + (1 - Zim)-1

X[Z~m) I res h~~i(t,z)-z~'2 res h~li(1-t,z)].
,-:' =;'1 =::-:- =1

Here, z 1 = 3 - 2fi and

res h~~i(t, z) = 4(7 - 5 fi) t2(t - 1)2 (2t + fi - I),
== 2',

i.e.,

res h ~~ ~ (~, z) = i (7 fi - 10).

Together with

we thus have

qj. d~) = n(b)1 - b). 2m) + i(7 j2 - 10)( 1 - zim) - I (z~m-j I - Z~ 2).
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Consequently,
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1 1 1 - Z7'-- +-----
-16 2)21 +z7"

from which, by noting that

2m 2m

L Iqj,o(t)1 = L qj,O(t) = I,
i ~ 1 j= 1

we finally obtain in accordance with (14)

17 1 1 - 7
m

II L;~ II =16 + 2 )2 1+:7"
2. The case r = 3. If N is specified in such a way that

N=2m, m even, (15)

the sign distribution for the components of the fundamental splines will be
as follows: f -1 )i- 1 qi,O(t) for j=I(1)m

(16)!qj,o(t)1 = (-l)j qj.o(t) for j=m+ 1(l)2m,

jqj,l(t)1 = (-1 y' 1 qi,l(t) for j= 1(1 )2m, (17)

. t =f- 1)j-lqj,2(t) for j= 1(I)m
(18 )Iqj.2()1 (-I)i qj.2(t) for j=m+ 1(1)2m.

In a similar way as in the case r = 2, which has already been dealt with,
(15) and the relations (16)-(18) successively lead to the following
statements

O~~:l i~l Iqj,o(t)! =j~l Iqj.o G)I
2 2m 1 h(O) (I 1'1')=_" 2kll.32'~

m /:1 1+(1'
I' odd

= ~ t 1- zm h~~)+ 1,30, z) dz
ni •c, 1+ zm z + 1 z '
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I 2m 1 2m ,(I )
=- " "(-I)j-IY-JI'hl!)" - 1'1'2m L. L. S 2k f 1,3 2' S

II ~O j- 1

_ (I) (I )- - h2k. 1,3 2:' - I ,

2m 2m I (1)1
max L Iqdt)1 = L Iqj,2 - I
O~(~lj_l j_1 2

1 " I _m hl2l (I 7) dz= _ ~ ---=-=--- 2k + 1.3 2' - _,
ni •('I I + zm z + I z
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C 1 now denotes a positively oriented circle with center 0 and radius p < I,
where p is fixed in such a manner that ('1 encloses all of the k - 2 zeros of
H 2k + 1,3(1, z) with an absolute value less than or equal to one. Eventually,
all these terms sum up to

I " 1 - zm
I'L 2m I; =_rl\ -
'2ktl,3' ,r I+-m

nl'CI '"

EXAMPLES, (i) In the trivial case k = 2

h~Ojd, z) = !(z + 1),

h~~jO, z)= f2(z-I),

h~~jd,z)=i:(z+l)

and (19) results in

II L 2m II I I 5 43
2k+l,3 = +31+16=31'

Again, this can easily be verified by direct calculation,

(ii) For k=r=3 we have (cf. [8, p,l35])

h(O) (~ _) __1_ (z + I )(29z2+ 582z + 29)
7,32'''' -128 z2+8z+1 '

h(l) (~. z) = _1_ (z - 1)(7z
2+ 136z + 7),

7,32 128 z2+8z+1

h(2) (~ z) = _1_ (z + 1)(Z2 + 58z + I)
7,3 2' 256 z2+8z+1 '
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i.e.,
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2 61 1" l-zm 59z2 +1222z+59dz
IILmll=-+_~ -- _

7,3 192 2561tiJlzl~1/21+zm z2+8z+1 z

1 [ 1- (4 - J15ynJ
= 384 299 + 75 J15 J15'1+ (4 - 15)m

Remark (ii). Similar methods turn out to be useful in obtaining expres
sions for Lebesgue constants even in the case of more general periodic
spline interpolation operators (cf. [7]).
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