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We derive a complex line integral representation for the Cebyshev norm of
periodic spline interpolation operators of odd degree on uniform lattices. Several
generalizations arc indicated. € 1991 Academic Press, Inc

We consider the problem of Hermite interpolation for polynomial splines
of degree 2k + 1 on a uniform lattice which without loss of generality is
assumed to be given by the integers Z. If the spline function s is required
to have period N1 and to interpolate derivatives up to the order r—1,
r=1, ie,

sPvy=y  v=01)N—-1, p=0(1)r-1, (1}

then this problem is known to be well-posed provided s is of continuity
class C**~"*D(R) and satisfies the consistency condition r<k+1 (cf.
[6,97). After a suitable shifting of coordinates N successive polynomial
components of s may be represented by the vector

q(1)=(q:(1), .. gn ()", O<r<1.

Particularly (cf. [6,9]), if we let {:=exp 2ni/N, the components g, (7).
J=1H1)N, p=0(1)r—1, of the r fundamental splines

Q(1) = (g1 (1), s gu (1)) p=0(1)r—1,
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which are defined by the interpolation conditions

qf”{}(O) o 013 p,o=0r—1,j=1{1N,

are given by
1 7°C .
9! =;Z TR, 600 J=1)N, p=0(1)r =1 (2)

The functions A%, , , in (2) are linear combinations of the Euler—Frobenius
polynomials H,(¢, z) (cf. [6]). For each fixed r, t <r<k+1, they have a
representation

h(2‘/)<] I,r t Z = z (Zil:)lr H7k+l—ﬂ(l ‘) (3)

The coefficients «%%, (z) in (3) are, for each fixed p=0(1) r — 1, defined
as solutions of the linear systems

patog

¢
E‘h(zili)-n(t Z)'(-,l:épa; p76=0(1)r—1' (4)

The common determinant 4,, ., (z) of the linear systems (4)—which does
not depend on p can for 1 <r<k+ 1 be written as (cf. [2])

A1 (2)= (= DI2TONTLL(r = 1)1 (1 =)0 D92 1o (L2),
(5)

The generalized Euler-Frobenius polynomials H,, ., (1, z) which occur in
(5) are reciprocal polynomials of degree 2(k —r+1) in z with simple rcal
zeros of sign (—1)" (cf. [3]). Particularly,

H2k+1,1(1s2)=H2k0~1(1s2)
and
Hy (1, £1)#£0.
ExampLE. For r=2 we obtain
(1—2)* Hy .y (1, Z)hzmlz(’ z)

=(2k+ 1) Hy(1, z) Hylt, 2) — 2kHy, ((1,2) Hy , 4(1, 2)
and

(1—2)**  Hy (1,2) A 5(1, 2)

=Hy,(1,z) Hy (8, 2) — Hay y1(1,2) Hyl1, 2) (6)
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with

In the special case r=k =2 we arrive at
(2 =62+ 1) A)(1, 2)
=4(z—1)(z*+4z4+ 1) = 5(z— )3z + 8z + 1) 1*
+20z(z—1)(z+ 1) —10z(z—= 12 P + 2(z> = 62+ 1)
and
(2 =62+ 1) A{)(2, 2)
=22+ 122+ 1z 4+ 1) 5 — (422 + 3322+ 222+ 1) ¢4
+2z2(322+ 14z 4+ 3) P —dz(z = 1)z + 1) P+ z(z2 =6z + D). (T)

Analogously, for r=2, k=13,

H, (1, 2y hP)(1, 2)
=6(z—1)(z* +262° + 6627 + 26z + 1)1’

—T(z—1)(5z% + 104z> + 19822 4+ 52z + 1)¢°

+84z(z — 12> + 1422 4+ 14z + 1)1

—105z(z = 1)* (22 + 6z + 1)1* +70z(z — 1)(2* = 722 =Tz + 1) ?

—2z(z = 1)} (22 =222+ 1) 2+ 2(* = T223 4+ 26222 = 722 + 1)

and
H (1, 2) A5, 2)
= (2% 4 57z* + 3022° + 302z + 57z + 1)1’

— (62> +285z% + 12082 + 90622 + 114z + 1)¢°
+32(5z* + 1762° +4782% + 176z + 5)1°
—20z(z — 1)(z* +20z* + 20z + 1) *
+52(3z% — 823 — 1582 — 8z + 3)4?
—6z(z—1)(z?=3122 =31z 4+ 1)¢?
+z(z* = 7223 42622 — T2z 4+ 1)1 (8)
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2

Let L}, ,,, denote the spline interpolation operator which assigns to
each incidence matrix Y :=((»!")), v=0(1)N—1, p=0(1)r—1, that
N-periodic spline function s=L3 ,,,YeC**' "(R) of degree 2k + 1
with knots in the integers which is characterized by the interpolation
properties (1).

The Cebyshev norm of LY, , |, is defined by

AT N . .
IL3 1l i= sup [ Lyyy, Yl ..;
[RAIER!

here, [|Y|| :=max{|y®’|, v=0(1) N—1, p=0(1) r—1}. Tt is easily seen (cf.
[4, 10]) that

r—1 N

= max ¥ Y Ig;, (0 (9)

L3 v,/
0<r< p=0 j=1

Consequently, any evaluation of (9) must start with an investigation of the
sign behaviour of the components ¢, ,(¢) of the fundamental splines q,(¢)
for 0 << 1. This has already been done for r =2 in the case of cardinal
Hermite interpolation by Lipow [4]. His arguments may be extended to
the present more general case, but we freely omit some of the more
cumbersome yct elementary details of this process.

In addition, we mention that another and perhaps generally more
convenient method of solving this problem is available due to the fact that
virtually all the intrinsic properties of the Hermite fundamental splines
q,(7) may be obtained as (usually simple) consequences of a transformation
of their component’s complex rcpresentation (2) into a real one (cf. [9]
and Remark (i) in Section 3 of the present paper for some details).

We now present a detailed discussion of the two most simple cases: r=2
and r=23. The extension of our procedure to the case of arbitrary r is
generally obvious.

In order to avoid any conccalment of the arguments used by the
necessity of handling too many different cases we categorically go, with
only a slight loss of generality, on the assumption that N is even, ie.,
N=2m.
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1. The case r=2. The components of the fundamental spline q,(¢) have
the property

1g,.0(D] = q,.(1), J=1HN,
whereas for the components of q,(7) we have

(t g;.1(1) for j=1(1)m
e )l_{ qlzl(t) for j=m+ I(1)N.

As a consequence, (2) and (9) give

2
|l‘ 2m -

1 2m 2m -
— » jyh(()) ! “
0(1(12m|:Z Z 1l <)

m 2m 2m 1
FEF - 3T o]

j—1 u--0 J=m+1 p=0
1 2m lh(lj . ([ g;z
- — max 2mh‘,(,)\’,,a(t H+4 3 ———————21":‘;‘2 o2
2mosigt pm 1 [
uoodd
2 2m lh(l) (l é'u)
2k +1,2\2*
=t4= Y Belzo (10}
p- 1 /5 -1
4 odd

In the last instance we have made use of the fact that 4%, , ,(¢,1)=1 and
the sum in brackets assumes its maximum valuc for ¢ =1 (cf. [4]).

By a well-known argument, which is based on an application of the
calculus of residues (cf. [5]), expression (10) may be transformed into the
complex line integral representation

l - ht’l) (1’2) Zm 1
1L, ol =14 —¢  HEERE g (1)

Here, C, and C, denote positively oriented circles about the origin with
radii p,=p and p,=p ', respectively, wherc p <1 is fixed in such a way
that C, encloses all the kK —1 zeros z,<z,< --- <z, ; of Hy,,(1,2)
which are located in the interior of the unit circle.

According to the symmetry relation

R z7 )= (=12 gl (1 =1, 2)

the integral
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can easily be shown to be equal to

fﬁ hyls 125, 2) _dz
¢, zz—1)y z"+ 1

and thus (11) eventually leads to

1 1—zhM. (L 2)de
Lo 4L 2% +1,243,2) 42
L3¢ 12l niTc,l'*'Zm z—1 z

; (12)

an expression, whose evaluation turns out to be of the utmost simplicity.

ExampLEs. (1) In the (trivial) case k=1 we get from (6)

RNt 2)= (2 =28 + 1)z + (P = 1),

which, according to (12), results in

. 1 1—z"dz 5
L7i=1+-— ==z 3
” 3'2“ +87tl'§21<11+2m z 4 (13)
It goes without saying that (13) may easily be verified directly.

(2) For k=2 we have from (7)

1 1 (z—1)(z>—38z+1)
Wl = z)==
32\2’ 32 22—6z+1

and thus by (12) we immediately arrive at

. 1 1—2"22—38 1d
||L§f’§;|:1+ § "z z+ az

Rride, 1+2m 22—6z+1 2

=T18|:17+4\/§1_—(E—\/——2-)—m]' (14)

1+(3-2/2)"

Evidently, (14) enables us to state some monotonicity properties for ||L§f’2’||
which turn out to be completely analogous to those given earlier by
Cheney and Schurer [1] in the case of Lagrange interpolation with cubic
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splines. Furthermore, in the case of cardinal spline interpolation (ic.,
m — o) we have

1w = 142 -38z+1d: 17442
‘ it 22—6z+1 = 16

(3) In the same way, for k=3, from (8) and (12) we deduce that

1 (1; 1 —z™ 2% — 5442° + 72062 — 544z + 1 £
1287 S,y b4 2™ 29 —T220 426222 —72z41 2

1LYy =1+

According to the fact that the relevant zeros of H,,(1,z) are
z,=0.01466871.. and z,=0.28330706.., the further evaluation of this
expression presents no difficulties.

Remark (1). In [9] we have deduced from (2) a real form of the com-
ponents ¢, () of the basis splines q,(7). As has already been noted earlier,
this representation not only enables us to give another proof of the proper-
ties of g, ,(7) which are used in the course of our derivation of expressions
for the norm of the operator L%, , , , but also provides us with the means
for a different method of computing L3}, , Il itself.

For k=r=2 and N = 2m the last mentioned possibility reads as follows:
The components g; (), j=1(1)2m, of q,(t) are given (cf. [9]) by

qj,l(t)=hgf;(’7 0) 6}'.2"1 h(Sl (1 - ta 0) 5lj+ (1 _Z'.llm)—l

x[z7" 7 ' res h{)(t,z)~2)7? Tes R =1, 2)].

=1z

Here, z, =3-2 \/5 and

res i), 2)=4(7T—=5/2) 21— 1) 2t + /2 1),

=2

res h{)(3, z) = %(7\/2 10).
Together with
RN 0)=14(1—1)
we thus have

G (D) =258, =8, 5m) + 37 /2—-10)(1 —227) " (27 L2 2),
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Consequently,

2m m 1
max Z lg;.()] = Z q;1 (5)‘
i=1

0<rgl

1
16 27‘/2

from which, by noting that

"3

“S

Z 1g;,0(t)] = Z q,o

we finally obtain in accordance with (14)

17
1L =+ —%=

1—zm

)

Jj=m+1

2m
zf’”)_1 (z7—1) Z z/
- 1

1

16" 2 21+2]

2. The case r=3.

m even,

If N is specified in such a way that

(15)

the sign distribution for the components of the fundamental splines will be

N=2m,
as follows:
s
g (D =(=1)""q,,(1)
14,0001 = {t:;q Zq(,;;m

for
for

for

for
for

Jj=11l)m
J=m+1(1)2m, (16)
Jj=1(1)2m, (17)
j=1(1)m
j=m+1(1)2m. (18)

In a similar way as in the case r =2, which has already been dealt with,

(15) and the relations (16)—(1
statements

8) successively lead to the following

)

m 1
OTaX Z |q_10 Z qu< )‘
<1 j= o1
zzbnzlh(z(l)‘)‘]3
m o= 1+2#
p odd
in

1-2"h3), 153, 2) dz

-9

wiie, 1427

z+1 z

s
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2 2m ) 1
max Z lg; (t) Z (—1)"14_/.1<->

()(r<IA= j=1 2

[{ )

&9

1 2m 1 2m

1
I NDNEHISC NN
u=0 j—1

1

- —hgp.l,z(i, -1},
max 72’" | Yl = zf | A
O<rxi = ql —-i—l tqj'z 2 ‘

_1g 1—‘mh(zi+13(%’z)£

_;I—i~(711+z z+ 1

C, now denotes a positively oriented circle with center 0 and radius p < 1,
where p is fixed in such a manner that C, encloses all of the k — 2 zeros of

Hyi 4 13(1, z) with an absolute value less than or equal to one. Eventually,
all these terms sum up to

1 1-2z"
L3, Ll =—
|- 2k i l,3|- ni(j)c, 1_+_Zm

(0) d; 1
h2A+I 3(23221};2k+1 3(3: 2) - — R ’<§, _1>‘ (19)

EXAMPLES. (i) In the trivial case k=2

R (3, 2)=5(z+ 1),
h1(3, 2)= (2 — 1),
h(3.2)=gi(z+ 1)

and (19) results in
”L7k+1 =1+ ﬁ+%:_

Again, this can easily be verified by direct calculation.

(it) For k=r=3 we have (cf. [8, p. 1357)

hgo;<1 >=L(Z+1)(29z2+582z+29)

2°%) 7128 2248241 :
oy (1 1 (z—1)722 41362+ 17)
hosl52) =752 2 k
2 128 z°+8z+1
) lz>_L(z+1)(zz+582+1)
73\2°7) 7 256 224+ 8241
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ie.,

1 - 1 —2z™ 5922 +1222z+59 dz
192 256m(£|_1,_1+z 22+ 8z+1 z

384[299+75f 4_%1.

Remark (ii). Similar methods turn out to be useful in obtaining expres-

1L =

sions for Lebesgue constants even in the case of more general periodic
spline interpolation operators (cf. [7]).
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